
Supplementary file for:

Approaching Prehistoric Demography: Proxies,
Scales and Scope of the Cologne Protocol in
European contexts

Schmidt, Isabell; Hilpert, Johanna; Kretschmer, Inga; Peters, Robin; Broich,
Manuel; Schiesberg, Sara; Vogels, Oliver; Wendt, Karl Peter; Zimmermann,
Andreas; Maier, Andreas

Script and example application to model
‘Core-Areas’ (Optimally Describing Isolines)

using R

Manual Broich & Robin Peters
15 Mai 2020

Introduction

This manual presents an example application of the Cologne Protocol. It is
based upon the .R files which are in the code\ directory of the GitHub
repository CologneProtocol-R (https://github.com/C-C-A-A/CologneProtocol-
R). If you want to apply the Cologne Protocol on your own data, we
recommend you to use these files, as it is possible to individually adjust
certain variables at the beginning of the 00_LEC.R file. However, the code
chunks shown in this manual originate from the mentioned .R files. It is
possible that the files of the GitHub repository have changed, due to
improvements.

This modelling approach constitutes the first of two successive tasks within
the ‘Cologne Protocol’ to estimate past population sizes and densities,
described in more detail elsewhere (Schmidt et al. 2020: S2.1. and S2.2.).
The manual outlines the technical implementation of working steps 1 to 12
(see Schmidt et al. 2020: Table S2): Firstly a GIS-analysis of site
distributions and secondly the identification of the ODI. The working steps
include the construction of Voronoi diagrams and “Largest Empty Circles”,
kriging, converting the kriging results into isolines and finally calculating
the criteria to select the ODI.

The goal of the script is to carry out all steps of the first two parts of the
Cologne Protocol in R. These are (cf. Schmidt et al. 2020, table S2):

https://github.com/C-C-A-A/CologneProtocol-R
https://github.com/C-C-A-A/CologneProtocol-R
https://github.com/C-C-A-A/CologneProtocol-R

Working steps:
1. Loading data (Shape-layer with sites as points)
2. Creating Voronoi Diagram
3. Extraction of Vertices
4. Aggregation of Vertices
5. Defining the Radius of the “Largest Empty Circle”
6. Kriging - Preparation and Grid
7. Kriging - Semivariogram
8. Kriging - inspect and export raster output
9. Creating Contour Lines (Isolines)
10. Calculating the Area and Number of Sites per isoline
11. Data export
12. Selecting the “Optimally Describing Isoline”

Dependencies

To run the code of the script several packages are needed. These
dependencies are stored in the deps.yaml file. It is possible to load them
manually or to use automagic::install_deps_file() function. If the package
automagic is not installed, it is possible to install it with
install.packages("automagic").
Furthermore, the script was developed under R version 3.6.3.

Working step 1: Loading data (Shape-layer with
sites as points)

For this exemplary application, we use a distribution map of the Early
Neolithic Linear Pottery Culture (LBK) in Central Europe. The map is based
on Preuss (1998, Karte 1) and available from the CRC 806 database (https://
crc806db.uni-koeln.de/start/). Besides point symbols representing single
sites the original map also included symbols for an agglomeration of five
sites. The digital data set has been processed to resolve this issue.

The distribution map can be loaded into R via an URL:

url_link of distribution map of Linear Pottery Culture
url_link <- "http://sfb806srv.uni-koeln.de/owsproxy.php?
service=WFS&version=1.0.0&request=GetFeature&typeNames=geonode
%3A_13_earlyneolithic_ce_sites_wgs84&outputFormat=csv"

load date as a data.frame
sites <- read.csv(url(url_link))

Conversion into SPDF
sites <- sp::SpatialPointsDataFrame(sp::SpatialPoints(
 cbind(sites$RECHTS, sites$HOCH)),
 sites,
 proj4string = CRS("+init=epsg:31467"))

This is not a reprojection, but some functions cause problems if the

https://crc806db.uni-koeln.de/start/
https://crc806db.uni-koeln.de/start/

projection is not defined in this way
sp::proj4string(sites) <- sp::CRS("+init=epsg:31467")

It is important to note, that cartesian coordinates (planar coordinates) have
to be used, because rgeos::gDistance will not accept elliptical coordinates.
Especially Lat/Long-coordinates will cause a problem.

We can also plot the data:

Largest Empty Circle

The “Largest Empty Circle” (LEC) or more precisely the radius of a LEC is a
measure of site distance. Every LEC has its center at a vertex of a Thiessen
polygon (e.g. Voronoi diagram) and exactly three sites are located on every
circumference of a LEC. An illustration can be found at Zimmermann et
al. (2004, Abb.5).
To summarize, areas with larger site distances will be characterized by
larger radii of LECs and, logically, areas with smaller site distances will be
characterized by smaller radii of LECs.

Working steps 2 and 3: Creating Voronoi diagrams and
Extraction of vertices

The first step is to calculate the Voronoi diagram and to extract the vertices:

calculate vertices of voronoi diagram
voronoi_vertices <- deldir::deldir(sites@coords[, 1],
 sites@coords[, 2],

 rw=c(t(sites@bbox)[1,1],
 t(sites@bbox)[2,1],
 t(sites@bbox)[1,2],
 t(sites@bbox)[2,2])) %$%
 # extraction of vertices
 dirsgs

After extracting the vertices from the Voronoi diagram, they have to be
prepared to enable a transformation into an SpatialPointsDataFrame (spdf):

rearrange voronoi_vertices in preparation for transformation into an spdf
voronoi_vertices <- rbind(setNames(voronoi_vertices[,c(1:2, 5, 7, 9)],
 c("x", "y", "ind", "bp", "thirdv")),
 setNames(voronoi_vertices[,c(3:4, 6, 8, 10)],
 c("x", "y", "ind", "bp", "thirdv")))

Finally, it is possible to transform the vertices into a spdf. Please note that
the projection is explicitly assigned to the newly created vertices_spdf,
since we have found that otherwise problems can arise:

transformation of voronoi_vertices into an spdf
vertices_spdf <- sp::SpatialPointsDataFrame(coords = voronoi_vertices[1:2],
 data = voronoi_vertices[, 3:5])

Ignore warining! It's not a reprojection. But some functions need this step.
sp::proj4string(vertices_spdf) <- sp::CRS("+init=epsg:31467")

Working step 4: Aggregation of vertices

During the step of extracting vertices we didn’t take care of vertices
duplicates. In addition, some of the vertices are located at the border of the
working area, the so-called border points. These points create artificial site
distances and it must be decided on a case-by-case basis whether the border
points should be deleted or not.
In the present example application we have to remove the duplicates, but we
will keep the border points.

remove_border_points <- FALSE # Normally, this variable is defined in the
header of 00_LEC.R

If Condition wether border points are removed or not
if(remove_border_points == TRUE){
remove dublicates and border points
vertices_spdf <- sp::remove.duplicates(vertices_spdf) %>%
 {.[.[[2]] == FALSE,]}
} else {
 # just remove dublicates
 vertices_spdf <- sp::remove.duplicates(vertices_spdf)
}

Working step 5: Defining the radius of the “Largest Empty
Circle”

In the following step we calculate the distance between a vertex of the
Voronoi diagram and its nearest site. This distance is the radius of a LEC
and will be assigned to the corresponding vertex.

calculate radius of LEC and add this information to vertices_spdf
vertices_spdf@data$radiusLEC <- rgeos::gDistance(sites,
 vertices_spdf,
 byid = TRUE) %>%
 apply(1, min)

Below you see a plot of the archaeological sites and the Voronoi diagram
with their vertices. The problem of the border points becomes visible in this
figure. They are created at the edge of the working area and thus do not
reflect actual site distances.

Kriging

The next part of this document will describe the used Kriging interpolation
to estimate site distances on a regular spaced grid within the working area.
These estimated site distances are a prerequisite for the creation of isolines.

Working step 6: Preparation and Grid

For kriging we need a grid of evenly distributed points. The interpolation
algorithm will estimate the site distance (radius of LEC) at every point of the

grid, based upon the available vertices and their values for the radius of the
LEC. A general introduction to kriging can be found at Hengel (2007)
including kriging in R.
The grid spacing to be selected depends on various factors. The size of the
working area or the regular distances between the archaeological sites are
an important factor. In addition, the selected grid spacing will significantly
influence the computing time required, because a shorter grid distance will
create more points.
For the current example we will create a grid with a spacing of 1000 m
between each point. This is a comparable coarse spacing but the working
area is spanning most of Central Europe, which is a quite large area.

Create a grid for kriging
grid <- expand.grid(x = seq(as.integer(range(vertices_spdf@coords[, 1]))[1],
 as.integer(range(vertices_spdf@coords[, 1]))[2],
 by = 1000),
 y = seq(as.integer(range(vertices_spdf@coords[, 2]))[1],
 as.integer(range(vertices_spdf@coords[, 2]))[2],
 by = 1000)) %>%
 {sp::SpatialPoints(coords = .[1:2], proj4string =
sp::CRS("+init=epsg:31467"))}

The generated grid consists of 492528 points, at which the radius of the
LEC is estimated by kriging.

Working step 7: Semivariogram

The kriging procedure requires a theoretical semivariogram, which is used
to estimate the radii of the LEC at every point of the grid. To compute this
theoretical semivariogram, we need to explore first the experimental
semivariogram. At this point we will refer again to Hengel (2007) as we will
give no introduction to kriging in general.
Before we can inspect the experimental semivariogram we have to define a
lag distance. We divide the bounding box diagonal by 250, the default lag
distance used in the Cologne Protocol:

Define Bounding Box Diagonal
bbox_diag <- sp::spDists(t(vertices_spdf@bbox))[1, 2]

Lagdistance = Bounding Box Diagonal / 250
lagdist <- bbox_diag/250

Now it is possible to compute the experimental semivariogram:

Sample variogram
vertices_vario <- gstat::variogram(radiusLEC~1,
 vertices_spdf,
 width = lagdist)

Registered S3 method overwritten by 'xts':
method from
as.zoo.xts zoo

With the help of the experimental semivariogram, which you can see below,
we are able to compute a theoretical semivariogram.

Doing so, we will need to identify the first plateau of the experimental
semivariogram. According to Zimmermann et al. (2004, 52) the sill and
range value of the theoretical semivariogram should be fitted to the first
plateau of the experimental semivariogram. Additionally, the nugget value
should be set to zero.
In the current example we will identify the first plateau automatically. Of
course, it is also possible to choose these values by hand. And a decision has
to be made on a case-by-case basis.

Identify first plateau for fitting theoretical variogram
range.plateau <- vertices_vario %$%
 gamma %>%
 diff() %>%
 {vertices_vario[2][which.max(./.[1] < 0.1),]}

sill.plateau <- vertices_vario$gamma[vertices_vario$dist == range.plateau]

Finally, we have to choose a model for the fitting of the theoretical
semivariogram. The function gstat::show.vgm() will show you all available
models. We, however, recommend the exponential “Exp” or spherical “Sph”

model.
In the current example we will use a spherical Model:

Fitting theoretical variogram
vertices_vario_fit <- gstat::fit.variogram(vertices_vario,
 gstat::vgm(nugget = 0,
 model = "Sph",
 psill = sill.plateau,
 range = range.plateau),
 fit.sills = FALSE,
 fit.ranges = FALSE)

Comparing the experimental and the theoretical variogram shows that we
more or less archived a good fit.

Kriging

Now we have every information for the kriging procedure. The only three
variables we have to define are nmin, nmax and maxdist in the gstat::krige()
function. nmin and nmax are in our case the minimum and maximum number
of Voronoi vertices, which will be considered by the kriging algorithm, so we
are using local Kriging. Furthermore, only observations (vertices) within a
range of half of the bounding box diagonal will be used (maxdist). These are
the default values for the Cologne Protocol (cf. Schmidt et al. 2020).

Kriging
LEC_kriged <- gstat::krige(radiusLEC~1,
 vertices_spdf,
 grid,

 model = vertices_vario_fit,
 nmin = 3,
 nmax = 10,
 maxdist = bbox_diag/2,
 debug.level = 0)

Working step 8: Kriging - inspect and export raster output

The results of the kriging procedure can be visualized by two plots. The first
one shows the estimated radii of the LECs at every point of the created grid
- the prediction:

The second one shows the variance of the kriging results, which is a quality
measure:

How to export the Kriging results as GeoTiff and grd-file:

Write raster files as GeoTiff and grd-File for use in GIS-Programms like
QGIS

 # Kriging-Results
 r <- raster::rasterFromXYZ(data.frame(x = sp::coordinates(LEC_kriged)[,1],
 y = sp::coordinates(LEC_kriged)[,2],
 z = LEC_kriged$var1.pred),
 crs = sp::CRS("+init=epsg:31467"))

 raster::writeRaster(r, "output/Kriging_raster.tif", format="GTiff",
overwrite=T)
 raster::writeRaster(r, "output/Kriging_raster.grd",format="raster",
overwrite=T)

 # Variance (Quality Measure)
 v <- raster::rasterFromXYZ(data.frame(x = sp::coordinates(LEC_kriged)[,1],
 y = sp::coordinates(LEC_kriged)[,2],
 z = LEC_kriged$var1.var),
 crs = sp::CRS("+init=epsg:31467"))

 raster::writeRaster(v, "output/Variance_raster.tif", format="GTiff",
overwrite=T, prj=T)
 raster::writeRaster(v, "output/Variance_raster.grd",format="raster",
overwrite=T, prj=T)

Optimally Describing Isolines

On the basis of the kriging results we will create isolines and we will select
an “Optimally Describing Isoline” (ODI). The selection of the ODI is based
upon several statistical parameters of the isolines (Zimmermann et
al. (2004, 53-55)).

Working step 9: Creating Contour Lines (Isolines)

In order to create isolines we need to transform the output of the
gstat::krige() function, which is a raster, into SpatialPolygonsDataFrame.
This has the advantage that statistics, like the number of archaeological
sites in an isoline, can easily be calculated. One disadvantage is, that this
transformation does take time.
To speed up this working step we transform the raster first into a
SpatialGridDataFrame and afterwards use the function
inlmisc::Grid2Polygons():

isoline_polygons <- LEC_kriged %>%
 {raster::rasterFromXYZ(data.frame(x = sp::coordinates(.)[, 1],
 y = sp::coordinates(.)[, 2],
 z = .[[1]]),
 crs = sites@proj4string)} %>%
 as("SpatialGridDataFrame") %>%
 inlmisc::Grid2Polygons(level = TRUE, at = seq(0, 20000, 500))

This is not a reprojection!
sp::proj4string(isoline_polygons) <- sp::CRS("+init=epsg:31467")

In our example application isolines will be created starting at 0,5 km and
ending up at 20 km with an equidistance of 0,5 km. When finished, we have
to rename the isoline_polygons, because the function
inlmisc::Grid2Polygons() does name them with reference to the mean value
of each step, e.g. the isoline between 1500 m and 2000 m is named “1750”
instead of “2000” in the current example.

Rename the isolines because Grid2Polygon names them with the middle value
isoline_polygons@data[, 1] <- seq(0, 20000, 500)
[2:c(length(isoline_polygons@data[, 1])+1)]

Working step 10: Calculating the Area and Number of Sites
per Isoline

In order to be able to select the ODI, it makes sense to look at the statistical
properties of the isolines. These are, for example, the number of
archaeological sites within the isolines, their difference in growth per
equidistance, the number of distinct areas per isoline or the area increase
per equidistance. In total, we will calculate eight different statistical
properties and we will store them in a data.frame:

Initialize data.frame
Isolines_stats <- data.frame(km_isoline = integer(),
 number_Area = integer(),
 number_Sites = integer(),
 percent_Sites = integer(),
 Area = integer(),
 increase_Sites = integer(),
 diff_Sites = integer(),
 increase_Area = integer(),
 diff_Area = integer(),
 stringsAsFactors = FALSE)

What now follows is the code to fill the above mentioned data.frame. We will
start with the number of distinct areas per equidistance:

Counting the numbers of distinct areas per isoline
for (i in 1:length(isoline_polygons)) {
 Isolines_stats[i,2] <- length(isoline_polygons@polygons[[i]]@Polygons) -
 sum(sapply(isoline_polygons@polygons[[i]]@Polygons,
function(x) {sum(isTRUE(x@hole), na.rm = TRUE)}))
}

Now we will fill the data.frame with the name of the isolines:

Insert name of isolines
Isolines_stats[, 1] <- isoline_polygons@data[, 1]

The next three calculations consider the number of sites within a LEC radius
(certain site distance) and its percentage as well as the enclosed area:

Calculate number of sites within a certain site distance
sites_n <- sapply(sp::over(isoline_polygons, sites, returnList = TRUE), nrow)
Isolines_stats$number_Sites <- cumsum(sites_n)

Calculate the percentage increase in the nummber of site per isoline
Isolines_stats$percent_Sites <- (Isolines_stats[, 3] * 100) / length(sites)

Calculate area enclosed by each isoline
iso_area <- raster::area(isoline_polygons)/1000000
Isolines_stats$Area <- cumsum(iso_area)

Based upon the statistical properties above, it is possible to calculate the
increase in number of sites and area per equidistance:

Calculate increase in numbers of sites per equidistance
Isolines_stats$increase_Sites <- c(NA, sites_n[-1])

Calculate increase in area of polygon per equidistance
Isolines_stats$increase_Area <- c(NA, iso_area[-1])

Lastly, we will calculate the difference in increase of sites and area per
equidistance:

Calculate difference of increase of number of sites per equidistance
Isolines_stats$diff_Sites <- c(NA, diff(Isolines_stats[, 6]))

Calculate difference in increase of area per equidistance
Isolines_stats$diff_Area <- c(NA, diff(Isolines_stats[, 8]))

To make reading of the data.frame easier, we will convert the equidistances
into kilometers. If you use a different map unit you may have to change this
step or leave it out:

Isolines_stats[, 1] <- Isolines_stats[, 1] / 1000

We can inspect the data.frame, although it is difficult to read the important
information for the selection of the ODI. Hence it might be a good idea to
visualize the information of the data.frame.

km_isoline number_Area number_Sites percent_Sites Area increase_Sites
1 0.5 79 376 15.81161 108 NA
2 1.0 141 637 26.78722 374 261
3 1.5 259 643 27.03953 860 6
4 2.0 498 684 28.76367 2191 41
5 2.5 703 964 40.53827 6191 280
6 3.0 948 1393 58.57864 12558 429
7 3.5 1224 1700 71.48865 19847 307
8 4.0 1407 1927 81.03448 27226 227
9 4.5 1447 2028 85.28175 34486 101
10 5.0 1495 2092 87.97309 40962 64
11 5.5 1535 2146 90.24390 46981 54
12 6.0 1536 2189 92.05214 52572 43
13 6.5 1529 2219 93.31371 58010 30
14 7.0 1512 2247 94.49117 63189 28
15 7.5 1538 2265 95.24811 68277 18
16 8.0 1494 2284 96.04710 72929 19
17 8.5 1484 2299 96.67788 77415 15
18 9.0 1505 2307 97.01430 81948 8
19 9.5 1494 2315 97.35071 86168 8
20 10.0 1479 2321 97.60303 90172 6
21 10.5 1518 2326 97.81329 94218 5
22 11.0 1531 2332 98.06560 98234 6
23 11.5 1507 2334 98.14971 102200 2
24 12.0 1522 2340 98.40202 106063 6
25 12.5 1431 2341 98.44407 109599 1
26 13.0 1404 2342 98.48612 112963 1
27 13.5 1431 2344 98.57023 116303 2
28 14.0 1420 2346 98.65433 119477 2
29 14.5 1437 2346 98.65433 122793 0
30 15.0 1418 2347 98.69638 126101 1
31 15.5 1454 2347 98.69638 129271 0
32 16.0 1462 2347 98.69638 132288 0
33 16.5 1482 2348 98.73844 135385 1
34 17.0 1510 2348 98.73844 138529 0
35 17.5 1546 2348 98.73844 141655 0
36 18.0 1544 2348 98.73844 144915 0
37 18.5 1528 2351 98.86459 148160 3
38 19.0 1552 2351 98.86459 151450 0
39 19.5 1548 2352 98.90664 154748 1
40 20.0 1515 2355 99.03280 158135 3

diff_Sites increase_Area diff_Area
1 NA NA NA
2 NA 266 NA
3 -255 486 220
4 35 1331 845

5 239 4000 2669
6 149 6367 2367
7 -122 7289 922
8 -80 7379 90
9 -126 7260 -119
10 -37 6476 -784
11 -10 6019 -457
12 -11 5591 -428
13 -13 5438 -153
14 -2 5179 -259
15 -10 5088 -91
16 1 4652 -436
17 -4 4486 -166
18 -7 4533 47
19 0 4220 -313
20 -2 4004 -216
21 -1 4046 42
22 1 4016 -30
23 -4 3966 -50
24 4 3863 -103
25 -5 3536 -327
26 0 3364 -172
27 1 3340 -24
28 0 3174 -166
29 -2 3316 142
30 1 3308 -8
31 -1 3170 -138
32 0 3017 -153
33 1 3097 80
34 -1 3144 47
35 0 3126 -18
36 0 3260 134
37 3 3245 -15
38 -3 3290 45
39 1 3298 8
40 2 3387 89

Working step 11: Data export

Our script is able to export the isolines as polygons (.shp), the raster images
of the kriging result and variance (.grd, GeoTiff) and a table with the
statistical properties of the isolines. This code is not shown here, but you
can find it at the end of the 03_Visualisation_Export.R file (see also
functions write.table() and rgdal::writeOGR.R).

Working step 12: Selecting the “Optimally Describing
Isoline”

Following the recommendations of Zimmermann et al. (2004, 53f.) and
Zimmermann et al (2009, 9ff.) we will have a look at three statistical
properties: the difference in increase of sites per equidistance, the number
of areas with a specific site density and the increase of included space. The
most important is, however, the increase of included space (Zimmermann et
al. 2009, 9). Please note that in the script a visualization of all statistical
properties is provided.
To begin with, we will plot the difference in increase of sites per
equidistance:

A maximum difference in increase of 239 sites can be seen from the 2.0 to
2.5 km isoline.
Next we will have a look at the number of areas with a specific site density:

The number of areas with a specific site density reach a plateau at the 5.0 or
5.5 km isoline. Lastly, we will plot the most important statistical parameter:
the increase of included space.

The figure shows a maximum of included space at the 4.0 km isoline.
According to Zimmermann et al. 2009, 9ff. this isoline would be selected
as ODI. For a theoretical background we refer to the mentioned
publications.
We would like to note that the ODI should not be selected automatically
based upon a maximum value of included space. For example several
archaeological cultures have shown two maxima which need an
archaeological interpretation (e.g. patterns of fission and fusion in
hunter/gatherer societies (cf. Kretschmer et al. 2016; Lundström et
al. 2020)). Furthermore in some cases it is not possible to observe a
maximum; instead, with increasing distance between sites a continuous
increase of space is to be observed. This would indicate a data set indicating
a poor archaeological record (cf. Zimmermann et al. 2009, 10).

Bibliography

Hengel, T., 2007. A Practical Guide to Geostatistical Mapping of
Environmental Variables. (Luxembourg 2007).

Kretschmer, I., Maier, A., Schmidt, I., 2016. Probleme und mögliche
Lösungen bei der Schätzung von Bevölkerungsdichten im Paläolithikum. In:

Kerig, T., K. Nowak, G. Roth (Eds.), Alles was zählt. Festschrift für Andreas
Zimmermann. Universitätsforschungen zur prähistorischen Archäologie 285,
Bonn: Habelt: 47-57.

Lundström, V., Peters, R., Riede, F., 2020. Demographic estimates from the
Palaeolithic-Mesolithic boundary in Scandinavia: comparative benchmarks
and novel insights. Philosophical Transactions of the Royal Society B.

Preuss, J. (ed.), 1998. Das Neolithikum in Mitteleuropa: Kulturen,
Wirtschaft, Umwelt vom 6. bis 3. Jahrtausend v. u. Z., Übersichten zum
Stand der Forschung. Beier & Beran: Weissbach.

Schmidt, I., Hilpert, J., Kretschmer, I., Peters, R., Broich, M., Schiesberg, S.,
Vogels, O., Wendt, K. P., Zimmermann, A., Maier, A., 2020. Approaching
Prehistoric Demography: Proxies, Scales and Scope of the Cologne Protocol
in European contexts. Philosophical Transactions of the Royal Society B.

Zimmermann, A., Richter, J., Frank, T., Wendt, K.P., 2004.
Landschaftsarchäologie II. Überlegungen zu Prinzipien einer
Landschaftsarchäologie. Bericht der Römisch-Germanischen Kommission
85, 37-96.

Zimmermann, A., Wendt, K.P., Frank, T., Hilpert, J., 2009. Landscape
Archaeology in Central Europe. Proceedings of the Prehistoric Society 75, 1-
53.

	Introduction
	Dependencies
	Working step 1: Loading data (Shape-layer with sites as points)
	Largest Empty Circle
	Working steps 2 and 3: Creating Voronoi diagrams and Extraction of vertices
	Working step 4: Aggregation of vertices
	Working step 5: Defining the radius of the “Largest Empty Circle”

	Kriging
	Working step 6: Preparation and Grid
	Working step 7: Semivariogram
	Kriging
	Working step 8: Kriging - inspect and export raster output

	Optimally Describing Isolines
	Working step 9: Creating Contour Lines (Isolines)
	Working step 10: Calculating the Area and Number of Sites per Isoline
	Working step 11: Data export
	Working step 12: Selecting the “Optimally Describing Isoline”

	Bibliography

